Neuroprotection of brain-derived neurotrophic factor against hypoxic injury in vitro requires activation of extracellular signal-regulated kinase and phosphatidylinositol 3-kinase.
نویسندگان
چکیده
Intrauterine asphyxia is one of the major contributors for perinatal death, mental and physical disorders of surviving children. Brain-derived neurotrophic factor (BDNF) provides a promising solution to hypoxic injury due to its survival-promoting effects. In an attempt to identify possible molecular mechanisms underlying the neuroprotective role of BDNF, we studied extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI-3-K) and p38 mitogen-activated protein kinase (MAPK) pathways. We demonstrated that BDNF protected cortical neurons against hypoxic injury in vitro via activation of both the ERK and PI-3-K pathways but not the p38 MAPK pathway. We also showed that both hypoxic stimuli and exogenous BDNF treatment phosphorylated the cyclic AMP response element-binding protein (CREB) and that CREB phosphorylation induced by BDNF was mediated via the ERK pathway in cultured cortical neurons.
منابع مشابه
BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway.
Neurotrophins activate several different intracellular signaling pathways that in some way exert neuroprotective effects. In vitro studies of sympathetic and cerebellar granule neurons have demonstrated that the survival effects of neurotrophins can be mediated via activation of the phosphatidylinositol 3-kinase (PI3-kinase) pathway. Neurotrophin-mediated protection of other neuronal types in v...
متن کاملNeuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase.
Apoptosis is a form of programmed cell death that plays a pivotal role during development and in the homeostasis of the adult nervous systems. However, mechanisms that regulate neuronal apoptosis are not well defined. Here, we report that brain-derived neurotrophic factor (BDNF) protects cortical neurons against apoptosis induced by camptothecin or serum deprivation and activates the extracellu...
متن کاملNeuroprotective signaling mechanisms of telomerase are regulated by brain-derived neurotrophic factor in rat spinal cord motor neurons.
Telomerase can promote neuron survival and can be regulated by growth factors such as brain-derived neurotrophic factor (BDNF). Increases of BDNF expression and telomerase activity after brain injury suggest that telomerase may be involved in BDNF-mediated neuroprotection. We investigated BDNF regulation of telomerase in rat spinal cord motor neurons (SMNs). Our results indicate that BDNF incre...
متن کاملA novel role for serum response factor in neuronal survival.
Recent studies indicate that neuroprotection afforded by brain-derived neurotrophic factor (BDNF) is mediated by extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3 kinase (PI3K). However, the mechanisms by which ERK and PI3K exert neuroprotection are not completely understood. Because ERK1/2 and PI3K both stimulate serum response element (SRE)-mediated gene expression, and s...
متن کاملBrain-derived neurotrophic factor-, epidermal growth factor-, or A-Raf-induced growth of HaCaT keratinocytes requires extracellular signal-regulated kinase.
The epidermal growth factor (EGF) receptor plays an important role in epithelial cells by controlling cell proliferation and survival. Keratinocytes also express another class of receptor tyrosine kinases, the neurotrophin receptors. To analyze the biological role of the neurotrophin brain-derived neurotrophic factor (BDNF) in keratinocytes, we expressed the BDNF receptor TrkB in immortalized h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience
دوره 26 3-4 شماره
صفحات -
تاریخ انتشار 2008